Answer:
The moment (torque) is given by the following equation:
[tex]\vec{\tau} = \vec{r} \times \vec{F}\\\vec{r} \times \vec{F} = \left[\begin{array}{ccc}\^{i}&\^j&\^k\\r_x&r_y&r_z\\F_x&F_y&F_z\end{array}\right] = \left[\begin{array}{ccc}\^{i}&\^j&\3k\\0.23&0.04&0\\150&260&0\end{array}\right] = \^k((0.23*260) - (0.04*150)) = \^k (53.8~Nm)[/tex]
Explanation:
The cross-product between the distance and the force can be calculated using the method of determinant. Since the z-components are zero, it is easy to calculate.