contestada

A particle moves along the x-axis with velocity given by v(t)=3t2+6t for time tâ¥0. If the particle at position x=2 at time t=0, what is the position of the particle at time t=1?
a) 4
b) 6
c) 0
d) 11
e) 12

Respuesta :

Answer:

b) 6

Explanation:

Given

v(t)=3t²+6t

X(0) = 2

X(1) = ?

Knowing that

v(t)=3t²+6t = dX/dt

⇒ ∫dX = ∫(3t²+6t)dt

⇒ X - X₀ = t³ + 3t²

⇒ X(t) = X₀ + t³ + 3t²

If  X(0) = 2

⇒  X(0) = X₀ + (0)³ + 3(0)² = 2

⇒  X₀ = 2

then we have

X(t) = t³ + 3t² + 2

when

t = 1

X(1) = (1)³ + 3(1)² + 2

X(1) = 6

After a time, t =1, the position of the particle has been 6. Thus, the correct option is b.

The velocity of the particle moving along the x-axis has been given by:

[tex]\rm v(t)\;=\;3t^2\;+\;6t[/tex]

The differentiation of v(t) in terms of x will be:

[tex]\rm \dfrac{dx}{dt}\;=\;3t^2\;+\;6t[/tex]

[tex]\rm \int dx\;=\;\int (3t^2\;+\;6t)\;dt[/tex]

differentiation with the limits if X be x and [tex]\rm x_0[/tex]:

x -  [tex]\rm x_0[/tex] = [tex]\rm t^3\;+\;3t^2[/tex]

In the given question, the value of  [tex]\rm x_0[/tex] = 2:

At time t = 0

x = [tex]\rm t^3\;+\;3t^2\;+\;x_0[/tex]

x = [tex]\rm (0)^3\;+\;3(0)^2\;+\;2[/tex]

x = 2.

To find the position of the particle at time =1, given, [tex]\rm x_0[/tex] = 2.

x = [tex]\rm (1)^3\;+\;3(1)^2\;+2[/tex]

x = 1 + 3 + 2

x = 6.

Thus, after time, t =1, the position of the particle has been 6. Thus, the correct option is b.

For more information about the position of the particle, refer to the link:

https://brainly.com/question/18328170