Answer:
With the given zeros x=-2,1,4 the polynomial function is [tex]x^3-3x^2-6x-8[/tex]
Step-by-step explanation:
Given zeros are x=-2,1,4
Now to find the polynomial function:
With the given zeros we can write it as below:
x=-2 implies that x+2=0
x=-1 implies that x-1=0
x=4 implies that x-4=0
Then we can the zeros or factors by (x+2)(x-1)(x-4)
Now expanding the zeros or factors:
[tex](x+2)(x-1)(x-4)[/tex]
[tex](x+2)(x-1)(x-4)=(x^2-x+2x-2)(x-4)[/tex] ( multiply each term with each term of another factor)
[tex]=(x^2+x-2)(x-4)[/tex] ( adding the like terms)
[tex]=x^3-4x^2+x^2-4x-2x+8[/tex] ( multiply each term with each term of another factor)
[tex]=x^3-3x^2-6x+8[/tex] ( adding the like terms)
[tex](x+2)(x-1)(x-4)=x^3-3x^2-6x+8[/tex]
Therefore the polynomial function is [tex](x+2)(x-1)(x-4)=x^3-3x^2-6x+8[/tex]
With the given zeros x=-2,1,4 the polynomial function is [tex]x^3-3x^2-6x-8[/tex]