A stone is thrown upward from the top of a building at an angle of 30° to the horizontal and with an initial speed of 20 m/s. The point of release is 45 m above the ground. How long does it take for the stone to hit the ground? What is the stone's speed?

Respuesta :

Answer:

Explanation:

Given

inclination [tex]\theta =30^{\circ}[/tex]

initial speed [tex]u=20\ m/s[/tex]

Point of release is 45 m above the ground

Considering stone to be a projectile, so time taken by projectile for its zero vertical displacement is

[tex]t_1=\frac{2u\sin \theta }{g}[/tex]

[tex]t_1=\frac{2\times 20\times \sin 30}{10}[/tex]

[tex]t_1=2\ s[/tex]

Now after completing zero vertical displacement , stone needs to travel another 45 m in downward direction with initial speed u=20\sin 30

[tex]h=u_yt+\frac{1}{2}a_yt^2[/tex]

where, [tex]h=height[/tex]

[tex]u_y=vertical velocity[/tex]

[tex]a_y=vertical acceleration[/tex]

[tex]t_0=time[/tex]

[tex]45=20\sin 30+\frac{1}{2}(9.8)(t_0)^2[/tex]

[tex]t_0^2=\frac{70}{9.8}[/tex]

[tex]t_0=2.64\ s[/tex]

thus total time time required is [tex]t=t_0+t_1=2.64+2=4.64\ s[/tex]

vertical velocity just before hitting

[tex]v_y=\sqrt{u_y^2+2\times a_y\times s}[/tex]

[tex]v_y=\sqrt{10^2+2\times 10\times 45}[/tex]

[tex]v_y=\sqrt{1000}=31.622\ m/s[/tex]

Horizontal velocity [tex]v_x=u\cos 30=17.32\ m/s[/tex]

Net velocity Just before hitting [tex]=\sqrt{v_x^2+v_y^2}[/tex]

[tex]=\sqrt{(17.32)^2+(31.62)^2}[/tex]

[tex]=\sqrt{1299.82}=36.05\ m/s[/tex]