Respuesta :

Answer:

76

Step-by-step explanation:

Answer:

The 8th term of geometric sequence is -8748

ie., [tex]a_{8}=-8748[/tex]

Step-by-step explanation:

Given geometric sequence is 4,-12,36,...

Geometric sequence can be written as

[tex]a_{1},a_{2},a_{3},..,[/tex]

[tex]a_{1}=4=a[/tex]

[tex]a_{2}=-12=ar[/tex]

[tex]a_{3}=36=ar^2[/tex]

and so on.

common ratio is [tex]r=\frac{a_{2}}{a_{1}}[/tex]

[tex]r=\frac{-12}{4}[/tex]

[tex]r=-3[/tex]

[tex]r=\frac{a_{3}}{a_{2}}[/tex]

[tex]r=\frac{36}{-12}[/tex]

[tex]r=-3[/tex]

Therefore [tex]r=-3[/tex]

Geometric sequence of nth term is [tex]a_{n}=ar^{n-1}[/tex]

To find the 8th term:

[tex]a_{8}=ar^{8-1}[/tex]

[tex]a_{8}=ar^{7}[/tex]

here a=4 and r=-3

[tex]a_{8}=ar^{7}[/tex]

[tex]=4\times (-3)^7[/tex]

[tex]=4\times (-2187) [/tex]

[tex]=-8748[/tex]

[tex]a_{8}=-8748[/tex]

Therefore the 8th term of geometric sequence is -8748