It takes 2 minutes to print out 3 photos. Write an equation relating the number of photos N to the number of minutes M. At this rate, how long will it take to print 10 photos? 14 photos?

Respuesta :

Answer:

Part a) [tex]M=6\frac{2}{3}\ min[/tex]

Part b) [tex]M=9\frac{1}{3}\ min[/tex]

Step-by-step explanation:

we know that

A relationship between two variables, M, and N, represent a proportional variation if it can be expressed in the form [tex]k=\frac{N}{M}[/tex] or [tex]N=kM[/tex]

In this problem, the relationship between the number of photos N to the number of minutes M represent a proportional variation

we have that

For M=2, N=3

Find the the constant of proportionality k

[tex]k=\frac{N}{M}[/tex]

substitute the value of N and M

[tex]k=\frac{3}{2}[/tex]

so

[tex]N=\frac{3}{2}M[/tex]

Part a) How long will it take to print 10 photos?

For N=10

substitute in the linear equation

[tex]10=\frac{3}{2}M[/tex]

solve for M

[tex]M=\frac{10*2}{3}[/tex]

[tex]M=\frac{20}{3}\ min[/tex]

Convert to mixed number

[tex]M=\frac{20}{3}\ min=\frac{18}{3}+\frac{2}{3}=6\frac{2}{3}\ min[/tex]

Part b) How long will it take to print 14 photos?

For N=14

substitute in the linear equation

[tex]14=\frac{3}{2}M[/tex]

solve for M

[tex]M=\frac{14*2}{3}[/tex]

[tex]M=\frac{28}{3}\ min[/tex]

Convert to mixed number

[tex]M=\frac{28}{3}\ min=\frac{27}{3}+\frac{1}{3}=9\frac{1}{3}\ min[/tex]