Answer:
If (a and b )≤ 0 then [tex]log(ab)=log(a)+log(b)[/tex] is disproved
Step-by-step explanation:
If a and b are positive real numbers then:
[tex]log(ab)=log(a)+log(b)[/tex]
But if a and b are negative then this axiom is not true as log is not defined
[tex]log_{c}(x)[/tex]= undefined [tex]for \quad x\leq 0[/tex]
So if (a and b )≤ 0 then [tex]log_{c}(a)[/tex] and [tex]log_{c}(b)[/tex] are undefined but [tex]log_{c}(-a*-b)[/tex] is defined.