Answer:
[tex]\frac{y}{x+y}[/tex]
Step-by-step explanation:
The required answer is the rate at which Machine A works when the two machines are combined.
Note: the rate of doing work is express as
[tex]rate=\frac{1}{time taken} \\[/tex]
Hence we can conclude that Machine A working rate is
[tex]machine A=\frac{1}{x} \\[/tex] and machine B working rate is
[tex]machine B=\frac{1}{y} \\[/tex]
When the two machine works together, the effective working rate is
[tex]\frac{1}{x}+\frac{1}{y}\\\frac{xy}{x+y}\\[/tex]
The fraction of the work that Machine B will not have complete because of Machine A help is the total work done by machine A
Hence the fraction of work done by A is expressed as
[tex]\frac{1}{x}*combine working rate[/tex]
[tex]\frac{1}{x}*\frac{xy}{x+y}\\\frac{y}{x+y} \\[/tex]
Hence the fraction of the work that Machine B will not have complete because of Machine A help is the total work done by machine A is [tex]\frac{y}{x+y} \\[/tex]