Respuesta :

Answer:

Option A) [tex]\frac{1}{x^2y^2}[/tex] is correct.

Therefore the simplified given expression [tex]\frac{x^0y^{-3}}{x^2y^{-1}}=\frac{1}{x^2y^2}[/tex]

Step-by-step explanation:

Given expression is  [tex]\frac{x^0y^{-3}}{x^2y^{-1}}[/tex]

To simplify the given expression:

[tex]\frac{x^0y^{-3}}{x^2y^{-1}}[/tex]

Above expression can be written as

[tex]\frac{x^0y^{-3}}{x^2y^{-1}}=\frac{(1)y^{-3}}{x^2y^{-1}}[/tex]

(since [tex]x^0=1[/tex] ,anything variable to the power "0' is 1)

[tex]\frac{x^0y^{-3}}{x^2y^{-1}}=\frac{y^{-3}}{x^2y^{-1}}[/tex]

 [tex]\frac{x^0y^{-3}}{x^2y^{-1}}=\frac{1}{x^2y^{-1}y^3}[/tex]  (since [tex]a^{-m}=\frac{1}{a^m}[/tex] )

[tex]\frac{x^0y^{-3}}{x^2y^{-1}}=\frac{1}{x^2y^{-1+3}}[/tex]  (using the property [tex]a^m+a^n=a^{m+n}[/tex])

[tex]\frac{x^0y^{-3}}{x^2y^{-1}}=\frac{1}{x^2y^2}[/tex]

Therefore [tex]\frac{x^0y^{-3}}{x^2y^{-1}}=\frac{1}{x^2y^2}[/tex]

Therefore Option A) [tex]\frac{1}{x^2y^2}[/tex] is correct.

Therefore the simplified given expression [tex]\frac{x^0y^{-3}}{x^2y^{-1}}=\frac{1}{x^2y^2}[/tex]