Respuesta :

Answer:

Δ MLP  ~  Δ HKG

By S-A-S similarity Postulate.

Step-by-step explanation:

Given:

In Δ MLP

MP = 20 ,

LP = 15

∠ P = 42°

In Δ HKG

HG = 16 ,

KG = 12

∠G = 42°

To Prove:

Δ MLP ~Δ HKG

Proof:

In Δ MLP and Δ HKG

[tex]\dfrac{MP}{HG}= \dfrac{20}{16}=\dfrac{5}{4}[/tex] ..........( 1 )

[tex]\dfrac{LP}{KG}= \dfrac{15}{12}=\dfrac{5}{4}[/tex]  ..............( 2 )

∴ [tex]\dfrac{MP}{HG}=\dfrac{LP}{KG}[/tex] ...From 1 and 2

       ∠P ≅ ∠ G = 42°          ...............Given

∴ Δ MLP ~Δ HKG ......{ By S-A-S similarity test}............Proved