Find the volume of the solid generated by revolving the region bounded by y equals 5 StartRoot Bold sin x EndRoot​, y equals 0 commaand x 1 equals StartFraction pi Over 3 EndFraction and x 2 equals StartFraction 3 pi Over 4 EndFraction about the​ x-axis.

Respuesta :

Looks like the region in question is the one bounded by [tex]y=5\sqrt{\sin x}[/tex] and the [tex]x[/tex]-axis, between [tex]x=\frac\pi3[/tex] and [tex]x=\frac{3\pi}4[/tex]. Revolving about the [tex]x[/tex]-axis is trivial using the disk method:

[tex]\displaystyle\pi\int_{\pi/3}^{3\pi/4}(5\sqrt{\sin x})^2\,\mathrm dx=25\pi\int_{\pi/3}^{3\pi/4}\sin x\,\mathrm dx=\boxed{\frac{25(1+\sqrt2)\pi}2}[/tex]