Answer:
Explanation:
Given
Force applied [tex]F=12\ N[/tex]
time taken [tex]t_1=2\ s[/tex]
Displacement [tex]s=16\ m[/tex]
using
[tex]s=ut+\frac{1}{2}at^2[/tex]
u=initial velocity
s=displacement
t=time
[tex]16=0+\frac{1}{2}a(2)^2[/tex]
[tex]a=8\ m/s^2[/tex]
thus mass of body [tex]m=\frac{F}{a}=\frac{12}{8}=1.5\ kg[/tex]
Next it is released from a height of [tex]h=10\ m[/tex]
time taken to reach ground [tex]t_2=2.58\ s[/tex]
using [tex]s=ut+\frac{1}{2}at^2[/tex] in vertical direction
here acceleration is due to acceleration due to gravity(g') of the planet
as it at rest so u=0 here
[tex]10=0+\frac{1}{2}(g')(2.58)^2[/tex]
[tex]g'=3.004\ m/s^2[/tex]
Thus acceleration due to gravity on Newtonian is [tex]3\ m/s^2[/tex]
Weight of tool on Newtonia [tex]W'=mg'[/tex]
[tex]W'=1.5\times 3.004=4.506\ N[/tex]
Weight on Earth [tex]W=1.5\times 9.8=14.7\ N[/tex]