A space-ship negotiates a circular turn of radius 2200 km at a speed of 27800 km/h.
A) What is the magnitude of the angular velocity?
B) What is the magnitude of the radial acceleration?
C) What is the magnitude of the tangential acceleration?

Respuesta :

Answer

given,

Radius of circular turn (r)=  2200 km = 2200 x 10³ m

speed of the spaceship = 27800 km/h

                                  v = 27800 x 0.278

                                  v = 7728.4 m/s

a) magnitude of angular velocity

    we know,

          v = r ω

 [tex]\omega = \dfrac{v}{r}[/tex]

 [tex]\omega = \dfrac{7728.4}{2200 \times 10^3}[/tex]

      ω = 3.51 x 10⁻³ rad/s

b) magnitude of radial acceleration

     [tex]a_r = \dfrac{v^2}{r}[/tex]

     [tex]a_r = \dfrac{7728.4^2}{2200 \times 10^3}[/tex]

            a_r = 27.149 rad/s²

c) spaceship is moving with constant velocity, the tangential acceleration of the spaceship is equal to zero.

        a_t = 0 m/s²