Respuesta :

Answer:

[tex]x=4\ and \ y=1[/tex]

Step-by-step explanation:

Given:

[tex]-5x+13y=-7[/tex]

[tex]5x+4y=24[/tex]

We need to find the values of 'x' and 'y'.

On solving the equation we get;

Let [tex]-5x+13y=-7 \ \ \ \ \ equation \ 1[/tex]

Also Let [tex]5x+4y=24 \ \ \ \ \ equation \ 2[/tex]

Now Adding equation 1 and equation 2 we get;

[tex](-5x+13y)+(5x+4y)=-7+24\\\\-5x+13y+5x+4y=17\\\\17y=17[/tex]

Now By using Division property we will divide both side by 17 we get;

[tex]\frac{17y}{17}=\frac{17}{17}\\\\y=1[/tex]

Now Substituting the value of y in equation 1 we get;

[tex]-5x+13y=-7\\\\-5x+13\times1=-7\\[/tex]

Now Subtracting both side by 13 using subtraction property we get;

[tex]-5x+13-13=-7-13\\\\-5x=-20[/tex]

Now By using Division property we will divide both side by -5 we get;

[tex]\frac{-5x}{-5}=\frac{-20}{-5}\\\\x=4[/tex]

Hence [tex]x=4\ and \ y=1[/tex]