— 5х + 13y = -7
5х + 4 = 24
н
ІНШІНІШІНІН
E
така
ан

Answer:
[tex]x=4\ and \ y=1[/tex]
Step-by-step explanation:
Given:
[tex]-5x+13y=-7[/tex]
[tex]5x+4y=24[/tex]
We need to find the values of 'x' and 'y'.
On solving the equation we get;
Let [tex]-5x+13y=-7 \ \ \ \ \ equation \ 1[/tex]
Also Let [tex]5x+4y=24 \ \ \ \ \ equation \ 2[/tex]
Now Adding equation 1 and equation 2 we get;
[tex](-5x+13y)+(5x+4y)=-7+24\\\\-5x+13y+5x+4y=17\\\\17y=17[/tex]
Now By using Division property we will divide both side by 17 we get;
[tex]\frac{17y}{17}=\frac{17}{17}\\\\y=1[/tex]
Now Substituting the value of y in equation 1 we get;
[tex]-5x+13y=-7\\\\-5x+13\times1=-7\\[/tex]
Now Subtracting both side by 13 using subtraction property we get;
[tex]-5x+13-13=-7-13\\\\-5x=-20[/tex]
Now By using Division property we will divide both side by -5 we get;
[tex]\frac{-5x}{-5}=\frac{-20}{-5}\\\\x=4[/tex]
Hence [tex]x=4\ and \ y=1[/tex]