Respuesta :

Answer:

a) x = 45°

b) AD is parallel to BC.

Step-by-step explanation:

Here, the given angles in the quadrilateral ABCD are:

∠A = ( 2 x)° , ∠B = ( 90)° , ∠C = ( x)°  and ∠D = ( 3x)°

Now, in a quadrilateral: SUM OF ALL INTERIOR ANGLES IS 360°.

∠A+ ∠B+  ∠C +∠D = (180)°

or, ( 2 x)+ ( 90)° + ( x)° +  ( 3x)°  =  (180)°

or, 6 x = 180 - 90 = 270°

or, x = 270/6  = 45°

or, x = 45°

Now, ∠A = ( 2 x)° = 2 x (45°) = 90°

⇒∠A  = ∠B = 90°

So, AD and BC are two lines perpendicular to AB.

⇒ AD  II  BC   (as two liner PERPENDICULAR to the same given lines are PARALLEL to each other)

Hence, AD is parallel to BC.