Respuesta :

[tex]-tan^x + sec^2x = 1[/tex] is proved

Solution:

We have to prove that,

[tex]-tan^x + sec^2x = 1[/tex]

By the trignometric identity,

[tex]sin^2x + cos^2 x = 1[/tex]

Divide both the sides by [tex]cos^2x[/tex] in above identity,

[tex]\frac{sin^2x}{cos^2x} + \frac{cos^2x}{cos^2x} = \frac{1}{cos^2x}[/tex]  --- eqn 1

We know that by definition of tan,

[tex]tan x = \frac{sinx}{cosx}[/tex]

Therefore,

[tex]tan^2x = \frac{sin^2x}{cos^2x}[/tex]

Apply the above in eqn 1

[tex]tan^2x + 1 = \frac{1}{cos^2x}[/tex] ---- eqn 2

By definition of cosine,

[tex]cosx = \frac{1}{secx}[/tex]

Therefore,

[tex]cos^2x = \frac{1}{sec^2x}[/tex]

Apply the above in eqn 2

[tex]tan^2x + 1 = sec^2x[/tex]

On rewriting we get,

[tex]sec^2x - tan^2x = 1\\[/tex]

Thus the given identity is proved step by step