The length of a rectangle is 3 units shorter than one-third of the width, x.
Which expression represents the perimeter of the rectangle?

8/3x−6
2/3x−4
8/3x−2
Why is that correct?
2/3x−8

Respuesta :

[tex]\frac{8x}{3} - 6[/tex] is the expression that represents the perimeter of rectangle

Solution:

Let "x" represent the width of rectangle

Given that length of rectangle is 3 units shorter than one-third of the width x

length of rectangle = one-third of the width x - 3

[tex]\text{ length of rectangle} = \frac{1}{3}x - 3 = \frac{x}{3} - 3\\\\\text{ length of rectangle} = \frac{x}{3} - 3[/tex]

The perimeter of rectangle is given as:

perimeter of rectangle = 2(length + width)

Substituting the known values we get,

[tex]\text{ perimeter of rectangle }= 2(\frac{x}{3} - 3 + x)\\\\\rightarrow 2(\frac{x - 9 + 3x}{3})\\\\\rightarrow 2(\frac{4x-9}{3})\\\\\rightarrow\frac{8x-18}{3}\\\\\rightarrow\frac{8x}{3} - \frac{18}{3}\\\\\rightarrow\frac{8x}{3} - 6[/tex]

Thus perimeter of rectangle is [tex]\frac{8x}{3} - 6[/tex]

Thus option 1 is correct