Respuesta :

Answer:

Therefore,

AD = 7 unit

AE = 600 unit

EF = 30 unit

FB = 5 unit

Ar(EFGH)= 210 unit²

Ar(ABCD)= 4445 unit²

Step-by-step explanation:

Given:

Consider a rectangle ABCD as shown in the figure below where,

Area (ABCD) = 635 × 7 = 4445

Therefore length and width of a rectangle will be

LENGTH =635 = AB

WIDTH  = 7 = AD

To Find:

AE =?

EF = ?

FB = ?

Ar(EFGH)=?

Ar(ABCD) =?

Solution:

We know that area of the rectangle is given by

[tex]\textrm{Area of rectangle}= LENGTH\times WIDTH[/tex]

[tex]\textrm{Area of rectangle ABCD}= 635\times 7=4445\ unit^{2}[/tex]

Substituting the values we get

[tex]\textrm{Area of rectangle AEHD}= AE\times 7\\\\4200=AE\times 7\\\therefore AE=\dfrac{4200}{7}=600[/tex]

Similarly for area rectangle FBCG,

[tex]\textrm{Area of rectangle FBCG}= FB\times 7\\\\35=FB\times 7\\\therefore FB=\dfrac{35}{7}=5[/tex]

Now we have

AB = 635,

[tex]AE + EF + FB = 635\\\\600+EF+5=635\\\\EF=635 -605=30\\\therefore EF = 30[/tex]

Similarly for area rectangle EFGH,

[tex]\textrm{Area of rectangle EFGH}= EF\times 7\\\\=30\times 7=210\ isunit^{2}[/tex]

Therefore,

AD = 7 unit

AE = 600 unit

EF = 30 unit

FB = 5 unit

Ar(EFGH)= 210 unit²

Ar(ABCD)= 4445 unit²

Ver imagen inchu420

Answer:

what she said lol