Respuesta :

Answer:

Therefore the correct option is first one

[tex]\dfrac{\pi}{4}[/tex]

Step-by-step explanation:

Given:

[tex]\arcsin (\dfrac{\sqrt{2} }{2})[/tex]

To Find:

[tex]\arcsin (\dfrac{\sqrt{2} }{2})=?[/tex]

Solution:

The arcsin function is the inverse of the sine function.

It returns the angle whose sine is a given number.

So,

[tex]\sin \dfrac{\pi}{4}=\dfrac{1}{\sqrt{2}}[/tex]

Means: The sine of [tex]\dfrac{\pi}{4}[/tex] radian is [tex]\dfrac{1}{\sqrt{2}}[/tex]

∴ [tex]\arcsin (\dfrac{\sqrt{2}}{2})\\ Rationalizing \ we\ get\\\arcsin (\dfrac{\sqrt{2}}{2})=\arcsin (\dfrac{\sqrt{2}}{2}\times \dfrac{\sqrt{2}}{\sqrt{2} } )\\\\\arcsin (\dfrac{\sqrt{2}}{2})=\arcsin (\dfrac{1}{\sqrt{2}})[/tex]

Means: The angle whose sin is [tex]\dfrac{1}{\sqrt{2}}[/tex] is [tex]\dfrac{\pi}{4}[/tex] radian.

Therefore the correct option is first one

[tex]\dfrac{\pi}{4}[/tex]

woo woo!

good luck smh

Ver imagen galactiicdoom2