Answer:
From the given equation h is solved that is given by
[tex]h=\frac{7C}{w}+y[/tex] or [tex]h=\frac{7C+wy}{w}[/tex]
Step-by-step explanation:
Given equation is [tex]C=\frac{1}{7}w(h-y)[/tex]
To solve the given equation for h:
[tex]C=\frac{1}{7}w(h-y)[/tex]
Multiplying by 7 on both sides
[tex]7C=7\times \frac{1}{7}w(h-y)[/tex]
[tex]7C=(1)w(h-y)[/tex]
[tex]7C=w(h-y)[/tex]
Dividing by w on both sides
[tex]7C\times \frac{1}{w}=\frac{1}{w}\times w(h-y)[/tex]
[tex]\frac{7C}{w}=h-y[/tex]
Taking -y to left side of the equation
[tex]\frac{7C}{w}+y=h[/tex]
Rewritting the above equation
[tex]h=\frac{7C}{w}+y[/tex]
Hence [tex]h=\frac{7C}{w}+y[/tex] or or [tex]h=\frac{7C+wy}{w}[/tex]