Respuesta :

Answer:

The Proof is given below.

Step-by-step explanation:

Given:

P is the center of Circle

∠ONE ≅ ∠TEN

To Prove:

∠5 ≅ ∠6

Proof:

Exterior Angle Theorem:

Exterior Angle Property of a Triangle states that measure of exterior angle of a triangle is equals to the sum of measures of its interior opposite angles.

STATEMENT                                                   REASON

1. So In ΔONE,

[tex]\angle 5=\angle ONE+\angle 2[/tex]     1. Exterior Angle Property of a Triangle.

2. Similarly In ΔTEN,

[tex]\angle 6=\angle TEN+\angle 1[/tex]      2. Exterior Angle Property of a Triangle.

3. But , ∠ONE ≅ ∠TEN                                 3. Given

4. And P is the center of circle So

[tex]PN=PE[/tex]                                             4.radius of same circle

5. ΔPEN is an Isosceles triangle,

∴ ∠ 1 ≅ ∠ 2                                                     5. Isosceles triangle property

6. ∴ ∠5 ≅ ∠6                                                  6. From 3 and 5 Transitive Property.........Proved