Answer:
Therefore,
[tex]y = 5[/tex]
[tex]RS=32\\ST=17\\RT=49[/tex]
Step-by-step explanation:
Given:
[tex]RS = 6y+2[/tex]
[tex]ST = 2y+7[/tex], and
[tex]RT = 12y- 11[/tex]
To Find:
[tex]y = ?[/tex]
[tex]RS=?\\ST=?\\RT=?[/tex]
Solution:
Consider a line R - S - T as shown below such that,
[tex]RT=RS+ST[/tex] ............Line Addition Property
Substituting the values we get
[tex]12y-11=6y+2+2y+7\\\\12y-8y=11+9\\\\4y=20\\\\\therefore y=\dfrac{20}{5}=5\\y=5[/tex]
Substituting the value 'y' we get
[tex]RS=6\times 5+2=32\\ST=2\times 5+7=17\\RT=12\times 5-11=49[/tex]
Therefore,
[tex]y = 5[/tex]
[tex]RS=32\\ST=17\\RT=49[/tex]