Respuesta :

Answer:

B

Step-by-step explanation:

Simplify the numerator and denominator of the fraction, that is

[tex]\frac{2}{x}[/tex] - [tex]\frac{4}{y}[/tex]

Multiply the numerator/denominator of the first fraction by y

Multiply the numerator/denominator of the second fraction by x

[tex]\frac{2y}{xy}[/tex] - [tex]\frac{4x}{xy}[/tex]

= [tex]\frac{2y-4x}{xy}[/tex]

Similarly

[tex]\frac{-5}{y}[/tex] + [tex]\frac{3}{x}[/tex]

Multiply numerator/denominator of the first fraction by x

Multiply numerator/denominator of second fraction by y

[tex]\frac{-5x}{xy}[/tex] + [tex]\frac{3y}{xy}[/tex]

= [tex]\frac{3y-5x}{xy}[/tex]

To perform the division

leave the fraction on the numerator

Change division to multiplication

Turn the fraction on the denominator upside down, thus

[tex]\frac{2y-4x}{xy}[/tex] × [tex]\frac{xy}{3y-5x}[/tex]

Cancel xy on the numerator and denominator

= [tex]\frac{2y-4x}{3y-5x}[/tex] ← factor 2 out of each term on the numerator

= [tex]\frac{2(y-2x)}{3y-5x}[/tex] → B

Answer:

B

Step-by-step explanation:

edg2021