Answer:
Therefore, the capacity of conical pit is 38.5 kilolitres.
Step-by-step explanation:
Given:
Shape is of Cone
Diameter = d = 3.5 m
∴ Radius = [tex]\dfrac{3.5}{2}=1.75[/tex]
Deep = Height = h = 12 m
Pi=[tex]\dfrac{22}{7}[/tex]
To Find:
Volume of Conical Pit( in kilolitres) = ?
Solution:
Volume of Cone is given by the formula,
[tex]\textrm{Volume of Cone}=\dfrac{1}{3}\pi (radius)^{2} \times height[/tex]
Substituting the values we get
[tex]\textrm{Volume of Cone}=\dfrac{1}{3}\times \dfrac{22}{7}\times (1.75)^{2} \times 12=38.5\ m^{3}[/tex]
Also,
[tex]1\ m^{3}=1000\ Litres=1\ kilolitres\\\\\therefore 38.5\ m^{3}=38.5\ kilolitres[/tex]
Therefore, the capacity of conical pit is 38.5 kilolitres.