Respuesta :

Answer:

Therefore, the capacity of conical pit is 38.5 kilolitres.

Step-by-step explanation:

Given:

Shape is of Cone

Diameter = d = 3.5 m

∴ Radius = [tex]\dfrac{3.5}{2}=1.75[/tex]

Deep = Height = h = 12 m

Pi=[tex]\dfrac{22}{7}[/tex]

To Find:

Volume of Conical Pit( in kilolitres) = ?

Solution:

Volume of Cone is given by the formula,

[tex]\textrm{Volume of Cone}=\dfrac{1}{3}\pi (radius)^{2} \times height[/tex]

Substituting the values we get

[tex]\textrm{Volume of Cone}=\dfrac{1}{3}\times \dfrac{22}{7}\times (1.75)^{2} \times 12=38.5\ m^{3}[/tex]

Also,

[tex]1\ m^{3}=1000\ Litres=1\ kilolitres\\\\\therefore 38.5\ m^{3}=38.5\ kilolitres[/tex]

Therefore, the capacity of conical pit is 38.5 kilolitres.