Respuesta :

r3t40

We are given [tex]\gamma=16.7^{\circ}[/tex], a right triangle and hypothenuse [tex]a=49[/tex]

Using angle function [tex]\cos(x)[/tex] we are able to find the value of [tex]t[/tex].

From picture (and definitions) we know that

[tex]\cos(\gamma)=t/a[/tex]

And now just solve for [tex]t[/tex]

[tex]t=a\cos(\gamma)=49\cos(16.7^{\circ})\approx46.93^{\circ}[/tex]

To find [tex]c[/tex] use sine

[tex]\sin(\gamma)=c/a\Longrightarrow c=a\sin(\gamma) \\ 49\sin(16.7^{\circ})\approx14.08^{\circ}[/tex]

Find [tex]T[/tex] by subtracting [tex]C[/tex] and [tex]90^{\circ}[/tex] from [tex]180^{\circ}[/tex] hence [tex]T=73.3^{\circ}[/tex]

The answer is A, C and D.

Hope this helps.