Answer:
A. Pmax = 588 KN
B. L = 2.97 m
C. d = 9.00 cm
Explanation:
First we calculate minimum moment of inertia:
Imin = (1/12)(base)(height)^3
Imin = (1/12)(0.096 m)(0.053 m)^3
Imin = 1.191 x [tex]10^{-6} m^{4}[/tex]
Now, for maximum load Pmax:
Pmax = π² E Imin/L²
Pmax = π²(200 x 10^9 N/m²)(1.191 x [tex]10^{-6} m^{4}[/tex])/4 m²
Pmax = 588 KN
I = (π/4)(r^4)
I = (π/4)(0.043 m)^4
I = 2.685 x [tex]10^{-6} m^{4}[/tex]
L² = π² E I/Pmax
L = √{π²(200 x 10^9 N/m²)(2.685 x [tex]10^{-6} m^{4}[/tex])/6 x 10^5 N}
L = 2.97 m
Pmax = π² E I/L²
I = (Pmax)L²/π²E
I = (9.4 x 10^5 N)(2.6 m)²/π²(200 x 10^9)
I = 3.219 x [tex]10^{-6} m^{4}[/tex]
but,
I = (π/4)(r^4) = 3.219 x [tex]10^{-6} m^{4}[/tex]
solving this,
r = 4.50 cm
and diameter will be:
d = 2r = 2(4.50 cm)
d = 9.00 cm