Answer:
The volume of a stack of nine bucks is[tex]\frac{1,215}{8}[/tex]cubic inches
Step-by-step explanation:
Area of the base of one book , A= [tex]22 \frac{1}{2} inch^2=\frac{45}{2} inch^2[/tex]
Height of 1 book = h = [tex]\frac{3}{4} inches[/tex]
If nine books are stacked together then height of the stack will be :H
H = [tex]9\times \frac{3}{4} inches=\frac{27}{4} inches[/tex]
So, volume of the stack = V
V = Area of the base × H
Area of base = area of base of the 1 book = A
[tex]V=A\times H=\frac{45}{2} inch^2\times \frac{27}{4} inches=\frac{1,215}{8}inch^3[/tex]
The volume of a stack of nine bucks is[tex]\frac{1,215}{8}[/tex]cubic inches