Respuesta :

Answer:

The constant term in the function is 5

Step-by-step explanation:

we have

[tex]f(x)=x^{2}+8x+b[/tex]

where

b is the y-intercept or the constant term of the function

Remember that

The x-intercept is the value of x when the value of the function is equal to zero

so

For x=-3 ----> f(x)=0

For x=-5 ----> f(x)=0

substitute any of the intercepts in the function

For x=-3

[tex]0=(-3)^{2}+8(-3)+b[/tex]

[tex]0=9-24+b[/tex]

[tex]0=-15+b[/tex]

[tex]b=15[/tex]

[tex]f(x)=x^{2}+8x+15[/tex]

Verify with the other intercept

For x=-5

[tex]0=(-5)^{2}+8(-5)+15[/tex]

[tex]0=25-40+15[/tex]

[tex]0=0[/tex] ---> is true

therefore

The constant term in the function is 5