Respuesta :

Answer:

Part 17) [tex]1,800^o[/tex]

Part 18) [tex]\angle WZX=77^o[/tex]

Step-by-step explanation:

Part 17) What is the sum of the measures of the interior angles of a dodecagon?

we know that

The sum of the interior angles in a polygon is equal to

[tex]S=(n-2)180^o[/tex]

where

n is the number of sides of polygon

In this problem we have

n=12 sides (dodecagon)

substitute the value of n in the formula

[tex]S=(12-2)180^o[/tex]

[tex]S=(10)180^o[/tex]

[tex]S=1,800^o[/tex]

Part 18) Find the measure of angle WZX

step 1

Find the value of x

we know that

An exterior angle of a triangle is equal to the sum of the opposite interior angles

so

[tex](18x+5)^o=48^o+(8x-3)^o[/tex]

solve for x

Group terms

[tex]18x-8x=48-3-5[/tex]

Combine like terms

[tex]10x=40[/tex]

[tex]x=4[/tex]

step 2

Find the measure of angle WZX

[tex]\angle WZX=(18x+5)^o[/tex]

substitute the value of x

[tex]\angle WZX=(18(4)+5)=77^o[/tex]

Answer:

Attached

Step-by-step explanation:

Ver imagen twinklecases