Respuesta :
Answer:
The domain is all real values of except x = 13.
Step-by-step explanation:
(f o g)(x) = (1/ (x - 13)) + 7.
The domain is all real numbers except x = 13.
Answer:
R-{13}
Step-by-step explanation:
We are given that
[tex]f(x)=x+7[/tex]
[tex]g(x)=\frac{1}{x-13}[/tex]
We have to find the domain of fog(x).
[tex]fog(x)=f(g(x))[/tex]
[tex]fog(x)=f(\frac{1}{x-13})[/tex]
[tex]fog(x)=\frac{1}{x-13}+7=\frac{1+7x-91}{x-13}=\frac{7x-90}{x-13}[/tex]
Domain of f(x)=R
Because it is linear function.
Domain of g(x)=R-{13}
Because the g(x) is not defined at x=13
fog(x) is not defined at x=13
Therefore, domain of fog(x)=R-{13}