Respuesta :

Answer:

The domain is all real values of  except x = 13.

Step-by-step explanation:

(f o g)(x) =  (1/ (x - 13))  + 7.

The domain is all real numbers except x = 13.

Answer:

R-{13}

Step-by-step explanation:

We are given that

[tex]f(x)=x+7[/tex]

[tex]g(x)=\frac{1}{x-13}[/tex]

We have to find the domain of fog(x).

[tex]fog(x)=f(g(x))[/tex]

[tex]fog(x)=f(\frac{1}{x-13})[/tex]

[tex]fog(x)=\frac{1}{x-13}+7=\frac{1+7x-91}{x-13}=\frac{7x-90}{x-13}[/tex]

Domain of f(x)=R

Because it is linear function.

Domain of g(x)=R-{13}

Because the g(x) is not defined at x=13

fog(x) is not defined at x=13

Therefore, domain of fog(x)=R-{13}