Respuesta :

[tex]\bf (\stackrel{x_1}{3}~,~\stackrel{y_1}{4})\qquad (\stackrel{x_2}{2}~,~\stackrel{y_2}{-1}) ~\hfill \stackrel{slope}{m}\implies \cfrac{\stackrel{rise} {\stackrel{y_2}{-1}-\stackrel{y1}{4}}}{\underset{run} {\underset{x_2}{2}-\underset{x_1}{3}}}\implies \cfrac{-5}{-1}\implies 5 \\\\\\ \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{4}=\stackrel{m}{5}(x-\stackrel{x_1}{3}) \\\\\\ y-4=5x-15\implies y=5x-11[/tex]