Respuesta :

Congruent triangles have equal side and angle measures.

The values of x and y 12 and 8

[tex]\mathbf{\triangle MTW \cong \triangle BGK}[/tex] means that

  • [tex]\mathbf{\angle M \cong \angle B}[/tex]
  • [tex]\mathbf{\angle T \cong \angle G}[/tex]
  • [tex]\mathbf{\angle W \cong \angle K}[/tex]

So, we have:

[tex]\mathbf{4x - 3 =45}[/tex]

Add 3 to both sides

[tex]\mathbf{4x =48}[/tex]

Divide both sides by 4

[tex]\mathbf{x =12}[/tex]

Next, we calculate angle M using:

[tex]\mathbf{\angle M + \angle T + 41 = 180}[/tex]

Recall that: [tex]\mathbf{\angle T \cong \angle G}[/tex]

So, we have:

[tex]\mathbf{\angle M + \angle G + 41 = 180}[/tex]

Substitute 45 for G

[tex]\mathbf{\angle M + 45 + 41 = 180}[/tex]

[tex]\mathbf{\angle M + 86 = 180}[/tex]

Subtract 86 from both sides

[tex]\mathbf{\angle M = 94}[/tex]

Recall that [tex]\mathbf{\angle M \cong \angle B}[/tex]

So, we have:

[tex]\mathbf{11y + 6 = 94}[/tex]

Subtract 6 from both sides

[tex]\mathbf{11y = 88}[/tex]

Divide both sides by 11

[tex]\mathbf{y = 8}[/tex]

So, we have:

[tex]\mathbf{x =12}[/tex] and [tex]\mathbf{y = 8}[/tex]

Hence, the values of x and y are 12 and 8, respectively

Read more about congruent triangles at:

https://brainly.com/question/14150585