Respuesta :

Answer:

The Slope is

[tex]slope=m=\dfrac{-5}{4}[/tex]

The Equation is

[tex](y+1})=\dfrac{-5}{4}\times x[/tex]

Step-by-step explanation:

Two Point Form

Given:  

Let,  

point A( x₁ , y₁) ≡ ( 0 ,-1)

point B( x₂ , y₂ )≡ (-4 , 4)

To Find:  

Equation of Line AB =?  

Solution:  

[tex]slope=m=\dfrac{y_{2}-y_{1} }{x_{2}-x_{1} }[/tex]

Substituting the point A( x₁ , y₁) ≡ ( 0 ,-1) and B( x₂ , y₂ )≡ (-4 , 4) we get

[tex]slope=m=\dfrac{4--1}{-4-0}=\dfrac{5}{-4}=\dfrac{-5}{4}[/tex]

Equation of a line passing through a points A( x₁ , y₁) and point B( x₂ , y₂ ) is given by the formula Two -Point Form,

[tex](y-y_{1})=\frac{y_{2}-y_{1} }{x_{2}-x_{1} }\times (x-x_{1})[/tex]  

Now on substituting the slope and point A( x₁ , y₁) ≡ ( 0 ,-1) and B( x₂ , y₂ )≡ (-4 , 4) we get

[tex](y--1})=\dfrac{4--1}{-4-0}\times (x-0)[/tex]

[tex](y+1})=\dfrac{-5}{4}\times x[/tex]  

OR

Equation of a line passing through a points A( x₁ , y₁) and having slope m is given by the formula,  

i.e equation in point - slope form

[tex](y-y_{1})=m(x-x_{1})[/tex]

Substituting the values we get

[tex](y+1})=\dfrac{-5}{4}\times x[/tex]