Answer:
maximum revenue is 25000
Step-by-step explanation:
The revenue function for a bicycle shop is given by R(x)=x⋅p(x)
Given [tex]p(x)= 200-0.4x[/tex]
[tex]R(x)=x \cdot p(x)[/tex]
Plug in p(x) in R(x)
[tex]R(x)=x \cdot 200-0.4x[/tex]
[tex]R(x)=200x-0.4x^2[/tex]
Now find out the vertex using formula x=-b/2a
a= -0.4, b=200
[tex]x=\frac{-b}{2a} =\frac{-200}{2(-.4)} =250[/tex]
Plug in 250 for x in R(x)
[tex]R(x)=200x-0.4x^2[/tex]
[tex]R(x)=200(250)-0.4(250)^2=25000[/tex]
So maximum revenue is 25000