Respuesta :

Answer:

maximum revenue is 25000

Step-by-step explanation:

The revenue function for a bicycle shop is given by R(x)=x⋅p(x)

Given [tex]p(x)= 200-0.4x[/tex]

[tex]R(x)=x \cdot p(x)[/tex]

Plug in p(x) in R(x)

[tex]R(x)=x \cdot 200-0.4x[/tex]

[tex]R(x)=200x-0.4x^2[/tex]

Now find out the vertex using formula x=-b/2a

a= -0.4, b=200

[tex]x=\frac{-b}{2a} =\frac{-200}{2(-.4)} =250[/tex]

Plug in 250 for x  in R(x)

[tex]R(x)=200x-0.4x^2[/tex]

[tex]R(x)=200(250)-0.4(250)^2=25000[/tex]

So maximum revenue is 25000