Answer:
Step-by-step explanation:
Given is a differntial equation [tex]x^2 y"+5xy'-21y=0[/tex],where x can take any positive value
One of the solution is
[tex]y_1 = x^3[/tex]
Let us assume the second solution [tex]y_2 = u x^3[/tex]
Differentiate this y2 two times and plug in the DE to reduce the order
[tex]y_2' = u'x^3 +3x^2 u\\y_2" = u"x^3+3x^2 u'+3x^2u'+6x u\\ = u"x^3+6x^2u'+6xu[/tex]
plug these in the DE
[tex]u"x^5+3x^4 u'+3x^4u'+6x^3 u+5u'x^4 +15x^3 u-21ux^3=0\\\\u"x^5+3x^4 u'+3x^4u'++5u'x^4 =0\\xu''+11u'=0[/tex]
Put w=u'
xw'+11w=0
[tex]y_2=ux^3[/tex]