A circle with radius of \greenD{6\,\text{cm}}6cmstart color #1fab54, 6, start text, c, m, end text, end color #1fab54 sits inside a circle with radius of \blueD{9\,\text{cm}}9cmstart color #11accd, 9, start text, c, m, end text, end color #11accd.

What is the area of the shaded region?

Round your final answer to the nearest hundredth

Respuesta :

Answer: [tex]141 cm^{2}[/tex]

Step-by-step explanation:

We have two circles:

Cirlce 1, with a radius [tex]r=6 cm[/tex] and area [tex]A_{1}[/tex]:

[tex]A_{1}=\pi r^{2}[/tex]

And Cicle 2, with a radius [tex]R=9 cm[/tex] and area [tex]A_{2}[/tex]:

[tex]A_{1}=\pi R^{2}[/tex]

Since Circle 1 is inside Circle 2 and assuming the area of the shaded region is the shown in the attached image, its area is:

[tex]A=A_{2}-A_{1}=\pi R^{2}-\pi r^{2}[/tex]

[tex]A=\pi (R^{2}- r^{2})[/tex]

[tex]A=\pi ((9cm)^{2}- (6cm)^{2})[/tex]

Finally:

[tex]A=141.37 cm^{2} \approx 141 cm^{2}[/tex]

Ver imagen cryssatemp

Answer:

45π cm ^2

Step-by-step explanation:

khan academy