Answer:
235,200 ways
Step-by-step explanation:
A fast-food restaurant offers 6 different burgers
5 different side orders
8 different flavor drinks
8 different flavors of ice cream.
use combination to find the ways nCr
[tex]nCr= \frac{n!}{r!(n-r)!}[/tex]
2 burgers can be selected from 6 different burgers in 6C2 ways
[tex]6C2= \frac{6!}{2!(6-2)!}=15[/tex]
2 different sides can be selected from 5 different side orders in 5C2 ways
[tex]5C2= \frac{5!}{2!(5-2)!}=10[/tex]
3 different flavor drinks can be selected from 8 different flavor drinks in 8C3ways
[tex]8C3= \frac{8!}{3!(8-3)!}=56[/tex]
2 ice cream flavors can be selected from 8 ice cream flavors in 8C2 ways
[tex]8C2= \frac{8!}{2!(8-2)!}=28[/tex]
Total ways = [tex]15 \cdot 10 \cdot 56 \cdot 28=235200[/tex]