(I) A pendulum has a period of 1.85 s on Earth. What is its period on Mars, where the acceleration of gravity is about 0.37 that on Earth?

Respuesta :

Answer:

[tex]T_{mars}=3.04 s[/tex]

Explanation:

given,

Time period of pendulum on earth = 1.85 s

acceleration of gravity of mars about that of earth = 0.37

Time period of mars = ?

using equation of time period

[tex]T =2\pi\sqrt{\dfrac{l}{g}}[/tex]

now,

time period of mars

[tex]T_{mars} =2\pi\sqrt{\dfrac{l}{g_{mars}}}[/tex]..........(1)

time period of earth

[tex]T_{earth} =2\pi\sqrt{\dfrac{l}{g_{earth}}}[/tex]..........(2)

dividing equation (2)/ (1)

[tex]\dfrac{T_{earth}}{T_{mars}}=\sqrt{\dfrac{g_{mars}}{g_{earth}}}[/tex]

[tex]\dfrac{T_{earth}}{T_{mars}}=\sqrt{\dfrac{0.37g_{earth}}{g_{earth}}}[/tex]

[tex]\dfrac{1.85}{T_{mars}}=\sqrt{0.37}[/tex]

[tex]T_{mars}=\dfrac{1.85}{\sqrt{0.37}}[/tex]

[tex]T_{mars}=3.04 s[/tex]

Time period of pendulum on mars is equal to  3.04 s

The period of the pendulum on mars is 3.03 s.

The given parameters;

  • period of the pendulum of Earth, [tex]T_e[/tex] = 1.85 s
  • acceleration due to gravity on Earth = g
  • acceleration due to gravity on mars = 0.37g

The period of the pendulum on mars is calculated as follows;

[tex]T = 2\pi \sqrt{\frac{l}{g} } \\\\T = \frac{k}{\sqrt{g} } \\\\T_1\sqrt{g_1} = T_2\sqrt{g_2} \\\\T_e\sqrt{g_e} = T_m\sqrt{g_m} \\\\T_m = \frac{T_e\sqrt{g_e}}{\sqrt{g_m} } \\\\T_m = T_e \sqrt{\frac{g_e}{g_m} } \\\\T_m = 1.85 \times \sqrt{\frac{g}{0.37g} } \\\\T_m = 3.03 \ s[/tex]

Thus, the period of the pendulum on mars is 3.03 s.

Learn more here:https://brainly.com/question/14596666