20 POINTS FOR 3 QUESTIONS!!!!


Given: ∆ABC, AB = BC, m∠1<90°


Perimeter of ∆ABC = 25


Difference between the two sides is 4


Find: AB, BC, AC



List the sides of ΔRST in in ascending order (shortest to longest) if:


m∠R = 3x+42°, m∠S = 4x−11°, and m∠T = x+13°



List the sides of ΔRST in in ascending order (shortest to longest) if:


m∠R = 2x+11°, m∠S = 3x+23°, and m∠T = x+42°

Respuesta :

Answer with Step-by-step explanation:

1.In triangle ABC

AB=BC

Let AB=BC=x and AC=y

Perimeter of triangle ABC=25

[tex]x+x+y=25[/tex]

[tex]2x+y=25[/tex]...(1)

[tex]x-y=4[/tex]...(2)

Adding equation (1) and (2)

[tex]3x=29[/tex]

[tex]x=\frac{29}{3}=9.67[/tex]

Substitute x=9.67 in equation (2)

[tex]9.67-y=4[/tex]

[tex]y=9.67-4=5.67[/tex]

[tex]AB=BC=9.67[/tex]

[tex]AC=5.67[/tex]

2.[tex]m\angle R=2x+11[/tex]

[tex]m\angle S=3x+23[/tex]

[tex]m\angle T=x+42[/tex]

[tex]m\angle R+m\angle S+m\angle T=180^{\circ}[/tex]

By using triangle angle sum property

Substitute the values then we get

[tex]3x+42+4x-11+x+13=180[/tex]

[tex]8x+44=180[/tex]

[tex]8x=180-44=136[/tex]

[tex]x=\frac{136}{8}=17[/tex]

Substitute the value

[tex]m\angle R=3(17)+42=93^{\circ}[/tex]

[tex]m\angle S=4(17)-11=57^{\circ}[/tex]

[tex]m\angle T=17+13=30^{\circ}[/tex]

[tex]m\angle R>m\angle S[/tex]

[tex]m\angle S>m\angle T[/tex]

[tex]ST>RT[/tex] (Side ST is opposite to angle R, Side RT is opposite to angle S

[tex]RT>RS[/tex]  (side RS is opposite to angle T)

When a>b

Then , opposite side of a> opposite side of b

RS<RT<ST

3.[tex]m\angle R=2x+11[/tex]

[tex]m\angle S=3x+23[/tex]

[tex]\angle T=x+42[/tex]

[tex]m\angle R+m\angle S+m\angle T=180^{\circ}[/tex]

By using triangle angle sum property

Substitute the values then we get

[tex]2x+11+3x+23+x+42=180[/tex]

[tex]6x+76=180[/tex]

[tex]6x=180-76[/tex]

[tex]6x=104[/tex]

[tex]x=\frac{104}{6}=17.3[/tex]

Substitute the value

[tex]m\angle R=2(17.3)+11=45.6[/tex]

[tex]m\angle S=3(17.3)+23=74.9[/tex]

[tex]m\angle T=17.3=42=59.3[/tex]

[tex]m\angle S>m\angle T[/tex]

[tex]m\angle T>m\angle R[/tex]

RT>RS

RS>ST

ST<RS<RT