Respuesta :

Answer:

Statement-1 is false

Statement-2 is True

Step-by-step explanation:

Given initially 50 bacteria present in perish dish.

Also, the population of bacteria gets tripled in every 8 hours.

Part-1

We can model this information in a function.

The population of bacteria after [tex]t[/tex] hours will be

[tex]f(x)=P_0\times3^{\frac{x}{8}[/tex]

Where [tex]P_0[/tex] is initial population of bacteria.

[tex]f(x)[/tex] is population of bacteria after [tex]x[/tex] hours

And [tex]x[/tex] is the time in hour.

So, plugging these value in equation we get,

[tex]P=50\times3^{\frac{x}{8}[/tex]

And Statement-1 has a function [tex]f(x)=3(50)^{\frac{x}{8} }[/tex]

That does not match with our function [tex]f(x)=50\times3^{\frac{x}{8}}[/tex]

So, Statement-1 is false.

Part-2

Now plug [tex]x=36[/tex] hours.

[tex]f(x)=50\times3^{\frac{x}{8}}\\x=36\\f(x)=50\times3^{\frac{36}{8}}\\f(x)=50\times3^{4.5}\\f(x)=50\times140.29\\f(x)=7014.805[/tex]

So, the population after [tex]x=36[/tex] hours is ≅[tex]7015[/tex] bacteria.