Respuesta :

Answer:

[tex]a=125^o[/tex]

[tex]b=55^o[/tex]

[tex]c=55^o[/tex]

[tex]d=55^o[/tex]

[tex]e=125^o[/tex]

[tex]f=55^o[/tex]

Step-by-step explanation:

step 1

Find the value of x

we know that

[tex](2x+25)^o=(x+75)^o[/tex] ----> by alternate interior angles

solve for x

Group terms

[tex]2x-x=75-25[/tex]

[tex]x=50[/tex]

step 2

Find the measure of angle a

we know that

[tex]a=(x+75)^o[/tex] ----> by vertical angles

substitute the value of x

[tex]a=(50+75)=125^o[/tex]

step 3

Find the measure of angle b

we know that

[tex]a+b=180^o[/tex] ----> by supplementary angles (form a linear pair)

we have

[tex]a=125^o[/tex]

substitute

[tex]125^o+b=180^o[/tex]

[tex]b=180^o-125^o=55^o[/tex]

step 4

Find the measure of angle c

we know that

[tex]c=b[/tex] ----> by vertical angles

we have

[tex]b=55^o[/tex]

therefore

[tex]c=55^o[/tex]

step 5

Find the measure of angle d

we know that

[tex]d=b[/tex] ----> by corresponding angles

we have

[tex]b=55^o[/tex]

therefore

[tex]d=55^o[/tex]

step 6

Find the measure of angle e

we know that

[tex]e=a[/tex] ----> by alternate exterior angles

we have

[tex]a=125^o[/tex]

therefore

[tex]e=125^o[/tex]

step 7

Find the measure of angle f

we know that

[tex]f=d[/tex] ----> by vertical angles

we have

[tex]d=55^o[/tex]

therefore

[tex]f=55^o[/tex]