Respuesta :

Answer:

[tex]y=48[/tex]

Step-by-step explanation:

Question :

Given:

[tex]y[/tex] varies directly with [tex]x[/tex]

when [tex]x=2, y=16[/tex]

To find value of  [tex]y[/tex] when [tex]x=6[/tex]

Solution:

From the given data we have:

[tex]y[/tex] ∝ [tex]x[/tex]

Thus, we have:

[tex]y=kx[/tex]

where [tex]k[/tex] is the constant of proportionality.

We can find the value of [tex]k[/tex] by plugging in the given values.

when [tex]x=2, y=16[/tex]

[tex]16=k(2)[/tex]

Dividing both sides by 2.

[tex]\frac{16}{2}=\frac{k(2)}{2}[/tex]

[tex]8=k[/tex]

∴ [tex]k=8[/tex]

So, the equation to find [tex]y[/tex] when [tex]x=6[/tex] will be:

[tex]y=8\times 6=48[/tex]

Thus, when [tex]x=6, y=48[/tex] (Answer)