What is the escape velocity on the planet Mars? Mars' mass is 6.46*10^ 23 kg and radius is 3.39*10^ 6 m. .

Respuesta :

Answer:5041.90 m/s

Explanation:

The escape velocity equation is:

[tex]V_{e}=\sqrt{\frac{2GM}{R}}[/tex] (1)

Where:

[tex]V_{e}[/tex] is the escape velocity

[tex]G=6.67(10)^{-11} Nm^{2}/kg^{2}[/tex] is the Universal Gravitational constant

[tex]M=6.46(10)^{23}kg[/tex] is the mass of Mars

[tex]R=3.39(10)^{6} m[/tex] is Mar's radius

Solving:

[tex]V_{e}=\sqrt{\frac{2(6.67(10)^{-11} Nm^{2}/kg^{2})(6.46(10)^{23}kg)}{3.39(10)^{6} m}}[/tex] (2)

Finally:

[tex]V_{e}=5041.90 m/s[/tex]  This is the escape velocity on Mars