Find the measure of angle P in the triangle below.

Answer:
Step-by-step explanation:
Sin (angle p) = 48/60 = 4/5 = 0.8
angle p = sin∧-1 0.8 = 53.13010235
Answer:
53.13°
Step-by-step explanation:
It the given triangle PQR,
[tex]p=48,q=60,r=36[/tex]
Cosine formula:
[tex]\cos A=\dfrac{b^2+c^2-a^2}{2bc}[/tex]
We need to find the measure of angle P.
[tex]\cos P=\dfrac{q^2+r^2-p^2}{2qr}[/tex]
Substitute the given values.
[tex]\cos P=\dfrac{(60)^2+(36)^2-(48)^2}{2(60)(36)}[/tex]
[tex]\cos P=\dfrac{2592}{4320}[/tex]
[tex]\cos P=0.6[/tex]
[tex]P=\cos^{-1}(0.6)[/tex]
[tex]P\approx 53.13[/tex]
Hence, the measure of angle P is 53.13 degrees.