Respuesta :

Answer:

a. [tex]y=x^2-3.8x-0.39[/tex]

b. [tex]y=x^2^ + 100[/tex]

c. [tex]y=x^2 + 4x + 5.5[/tex]

Step-by-step explanation:

Many different graphics can have the same vertex.

The equation of a parabola in the form of a vertex is:

[tex]y=a(x-h)^2+k[/tex]

where [tex](h,k)[/tex] is the vertex

  • for a. [tex](1.9,-4)[/tex]

[tex]h=1.9[/tex]

and

[tex]k=-4[/tex]

so the equation is:

[tex]y=a(x-1.9)^2+(-4)[/tex]

[tex]y=a(x-1.9)^2-4[/tex]

As we are not given the value of [tex]a[/tex], and we are only asked for an equation we can choose the value we like. I will choose a = 1 to simplify

[tex]y=(x-1.9)^2-4[/tex]

[tex]y=x^2-3.8x+3.61-4\\y=x^2-3.8x-0.39[/tex]

  • for b.[tex](0,100)[/tex]

[tex]h=0[/tex]

and

[tex]k=100[/tex]

so the equation is:

[tex]y=a(x-0)^2 + 100[/tex]

[tex]y=ax^2+ 100[/tex]

again choosing a=1

[tex]y=x^2+100[/tex]

  • for c.[tex](-2,3/2)[/tex]

[tex]h=-2[/tex]

and

[tex]k=3/2[/tex]

so the equation is:

[tex]y=a(x-(-2))^2+3/2[/tex]

[tex]y=a(x+2)^2+3/2[/tex]

again choosing a=1

[tex]y=(x+2)^2+3/2[/tex]

[tex]y=x^2+4x+4+3/2\\y=x^2+4x+5.5[/tex]