Answer:
[tex](5,3)[/tex]
[tex](0,-2.5)[/tex]
[tex](-4,0)[/tex]
Step-by-step explanation:
The equation of a parabola in the form of the vertex is the following:
[tex]y=a(x-h)^2+k[/tex]
and the vertex will be in the coordinates: [tex](h,k)[/tex]
for a. [tex]y = (x - 5)^2 + 3[/tex]
we can see that [tex]h=5[/tex], and [tex]k=3[/tex]
so the vertex is at [tex](5,3)[/tex]
for b. [tex]y =x^2 - 2.5[/tex]
we can re accommodate this equation as: [tex]y=(x-0)^2+(-2.5)[/tex]
in this form is easier to see that [tex]h=0[/tex], and [tex]k=-2.5[/tex]
so the vertex is at [tex](0,-2.5)[/tex]
for c. [tex]y = (x + 4)^2[/tex]
we can re accommodate this equation as: [tex](x-(-4))^2+0[/tex]
and as we can see [tex]h=-4[/tex] and [tex]k=0[/tex]
so the vertex is at [tex](-4,0)[/tex]