Respuesta :

Answer:  [tex]\frac{45}{2}[/tex]

Step-by-step explanation:

The exercise is: " Evaluate [tex]\frac{1}{4}c + 3d[/tex] when [tex]c = 6[/tex] and   [tex]d = 7[/tex]

Given the following expression:

 [tex]\frac{1}{4}c + 3d[/tex]

You can follow these steps in order to evaluate it:

 1. Substitute [tex]c = 6[/tex] and   [tex]d = 7[/tex] into the expression provided in the exercise:

  [tex]\frac{1}{4}(6) + 3(7)[/tex]

2. Solve the multiplications. Remember that:

 [tex]\frac{a}{b}*\frac{c}{d}=\frac{ac}{bd}[/tex]

Then:

 [tex]=\frac{6}{4} +21[/tex]

3. Reduce the fraction. Notice that the numerator 6 and the denomiantor 4 can be both divided by 2. Then:

[tex]=\frac{3}{2} +21[/tex]

4. Solve the addition:

[tex]=\frac{3}{2} +\frac{21}{1}[/tex]

 Since the number 21 has a denominator 1, the Least Common Denominator is:

[tex]LCD=2[/tex]

Then, the sum is:

[tex]=\frac{3+42}{2}=\frac{45}{2}[/tex]

Answer:45/2

Step-by-step explanation:.