Respuesta :
Answer: [tex]\frac{45}{2}[/tex]
Step-by-step explanation:
The exercise is: " Evaluate [tex]\frac{1}{4}c + 3d[/tex] when [tex]c = 6[/tex] and [tex]d = 7[/tex]
Given the following expression:
[tex]\frac{1}{4}c + 3d[/tex]
You can follow these steps in order to evaluate it:
1. Substitute [tex]c = 6[/tex] and [tex]d = 7[/tex] into the expression provided in the exercise:
[tex]\frac{1}{4}(6) + 3(7)[/tex]
2. Solve the multiplications. Remember that:
[tex]\frac{a}{b}*\frac{c}{d}=\frac{ac}{bd}[/tex]
Then:
[tex]=\frac{6}{4} +21[/tex]
3. Reduce the fraction. Notice that the numerator 6 and the denomiantor 4 can be both divided by 2. Then:
[tex]=\frac{3}{2} +21[/tex]
4. Solve the addition:
[tex]=\frac{3}{2} +\frac{21}{1}[/tex]
Since the number 21 has a denominator 1, the Least Common Denominator is:
[tex]LCD=2[/tex]
Then, the sum is:
[tex]=\frac{3+42}{2}=\frac{45}{2}[/tex]