Respuesta :

Answer:

For given equation the value m=6

That is the value of m is 6.

Step-by-step explanation:

Given equation can be written as

[tex]36^{12-m}=6^{2m}[/tex]

Now to find the value of m in the equation:

[tex]36^{12-m}=6^{2m}[/tex]

[tex]36^{12}.36^{-m}=6^{2m}[/tex]  ( using [tex]a^{m+n}=a^m.a^n[/tex]) Here m=12 and n=-m

[tex]36^{12}.36^{-m}=(6^{2})^{m}[/tex] (using [tex](a^m)^{n}=a^{mn}[/tex]) Here m=2 and n=m

[tex]\frac{36^{12}}{36^{m}}=(6^{2})^{m}[/tex]  (using the property [tex]a^{m-n}=\frac{a^m}{a^n}[/tex] Here m=12 and n=m

[tex]\frac{36^{12}}{36^{m}}=36^{m}[/tex]

Now multiplying [tex]36^{m}[/tex] on both sides

[tex]\frac{36^{12}}{36^{m}}\times 36^{m}=36^{m}\times 36^{m}[/tex]

[tex]36^{12}=36^{m+m}[/tex]  ( using [tex]a^{m+n}=a^m.a^n[/tex]) Here m=m and n=m

[tex]36^{12}=36^{2m}[/tex]

In the above we have base numbers are same so that we can equate  the powers of these numbers

12=2m

Rewritting the equation

[tex]2m=12[/tex]

[tex]m=\frac{12}{2}[/tex]

m=6

Therefore the value of m is 6.

For given equation the value m=6.

vouch, m=6 is correct.