Respuesta :

Answer:

See explanation and proof below.

Step-by-step explanation:

For this case we want to proof this identity:

[tex] cos(\frac{\theta}{2}) = \pm \sqrt{\frac{1+ cos(x)}{2}}[/tex]

And we need to us the double angle formula given by:

[tex] cos^2 (x) = \frac{1+ cos (2x)}{2}[/tex]

If we use a substitution for example [tex] x = \frac{\theta}{2}[/tex] we see that the double angle formila is given by:

[tex] cos^2(\frac{\theta}{2}) = \frac{1+ cos (2\frac{\theta}{2})}{2}[/tex]

And we got:

[tex] cos^2(\frac{\theta}{2}) = \frac{1+ cos (\theta)}{2}[/tex]

And if we apply sqaure root on both sides we got:

[tex] cos(\frac{\theta}{2}) = \pm \sqrt{\frac{1+ cos (\theta)}{2}}[/tex]

And that complete the proof