Respuesta :

Answer:

90π cm²

Step-by-step explanation:

Given: Radius of circular base= 5 cm

           height= 12 cm

   

Now finding the surface of cone.

Formula; Surface area of cone= [tex]\pi rl+ B[/tex]

Where; r= radius

l= slant height

B is the area of base, which is circle.

Area of circle (B)= πr²

Area of circle (B)= [tex]\pi \times 5^{2} = 25\pi[/tex]

Area of circle (B)= [tex]25\pi[/tex]

Finding slant height (l)

Formula; [tex]l= \sqrt{r^{2}+h^{2}  }[/tex]

⇒l = [tex]\sqrt{5^{2}+12^{2}  } = \sqrt{25+144 }[/tex]

l= [tex]\sqrt{169} = 13\ cm[/tex]

Next, using the formula for finding surface area of cone.

Surface area of cone= [tex]5\times 13\times \pi + 25\pi[/tex]

⇒ Surface area of cone= [tex]65\pi +25\pi = 90\pi[/tex]

Surface area of cone= 90π cm²

Answer:

S.A. = 90 pi cm2

Step-by-step explanation:

1. pi(3.14) x radius(5) x slant height(13) = 90